Meta-method of evaluating behavioral biases in financing

Document Type : علمی - پژوهشی

Authors

1 Ph.D. student, Economics, University of Isfahan, Iran

2 Associate Professor, Economics, University of Isfahan, Iran

Abstract

Introduction and objectives
The way of financing is also effective on other issues such as profit, efficiency and expansion of production. Managers have an effective role in this field, they usually have their own styles when making decisions about financing and are not completely rational (Bertrand and Schoar, 2003). Research shows that managerial traits such as behavioral biases are important factors for capital structure decisions (Hackbarth, 2008). In most of the conducted researches, the existence of behavioral bias in managers has been confirmed. On the one hand, bias in decisions related to financing causes non-optimality and wastage of financial resources, and on the other hand, the issue of financing in Iran has deficiencies such as disproportionate distribution of risk, lack of proper monitoring system, lack of connection between real and credit sectors of the economy and the existence of unused capacities are faced (Mousavi, 2016). Therefore, investigating the behavioral biases of managers under the field of financing in Iran is important to control and reduce these biases. According to the growing trend of behavioral financial studies in the last decade, it is necessary to conduct researches with a forward-looking approach for the growth and guidance of future researches in order to identify the gaps and neglected points in the researches. The purpose of this study is to analyze the methods of evaluating behavioral biases, especially in research related to financing methods. This article deals with the analysis and criticism of the methodology of the researches done in this field in the form of meta method. meta method is used in selected studies by using the analysis of statistical methods and monitoring methods of bias evaluation. Considering that so far, no research has been done in the field of pathology of behavioral bias evaluation methods, especially researches related to financing methods; The results of this research can be used by researchers for future studies.
Method
This research is developmental in terms of its purpose, and since it examines the methodology of studies in the field of evaluating behavioral biases, it is of the content analysis type. To collect data, library study and document review were used. The statistical population of the present research is domestic and foreign articles in the field of behavioral finance, behavioral biases in financing methods, and evaluation of behavioral biases. The research method in this study is meta method. In the present research, according to the purpose of the research, the analysis of statistical methods, the monitoring of methods for evaluating biases in selected studies have been used. Considering that the purpose of this research is to investigate the methods of evaluating behavioral biases in research related to financing methods, keywords such as behavioral finance, evaluation of behavioral biases, and financing methods are used to select articles. After searching in reliable domestic and foreign databases, and after studying the researches, articles related to the subject of the research were collected. To investigate the methods of evaluating behavioral biases, more than 200 articles have been studied, of which 33 related articles have been selected because some articles have used similar methods. Due to the lack of a single method in the field of meta method, in this research, an innovative framework is used in the area of meta method. In this way, researches are reviewed in two parts. In the first part, the statistical methods for evaluating behavioral biases in selected researches are reviewed, and in this way, the available methods for evaluating each bias are presented separately. In the second part, the monitoring of the number of repetitions of the use of bias assessment methods in the researches is discussed. In this part, for two methods of statistical data analysis, i.e., descriptive statistics and inferential statistics in general and the subsections of this Two methods, i.e., descriptive indices, graphs and tables for descriptive statistics and parametric and non-parametric methods for inferential statistics, the number of evaluation methods are given.
Findings
In order to find different methods of evaluating behavioral biases in researches related to financing methods, selected studies were reviewed and methods of measuring that bias were obtained for each bias separately. In these studies, both descriptive statistics and inferential statistics have been used to evaluate biases. Among the 20 behavioral biases, the overconfidence bias was tested more than the other biases, and then the anchoring bias was tested. The biases of conformism, innovation and illusion of control have the least number of evaluations in these studies. To analyze the data in the selected studies, two methods of descriptive statistics and inferential statistics have been used; But the inferential method has been noticeably used to evaluate behavioral biases in research related to financing methods; Inferential statistics were used in 30 studies, but descriptive statistics were used in 14 studies. It should be noted that among the numerous studies, 33 related studies have been examined, some of which have used both descriptive statistics and inferential statistics in their research. In the selected studies to evaluate the biases in terms of time dimension, in the studies of the first researchers in this field, such as Kahneman and Tversky, the descriptive statistics method has been used more to evaluate and prove the existence of behavioral biases. In subsequent studies, especially in the last decade, more inferential statistics have been used in this field.
Discussion and Conclusions
Paying attention to the results of the research, research problems and gaps are observed in this field. For example, some biases such as compatibilism bias have been neglected, and it is suggested that biases should be investigated more comprehensively in future. It was also observed that studies in this field have mostly used descriptive methods or the regression family, which indicates the low variety of statistical analysis methods in this field. Therefore, researchers need to use other up-to-date analytical methods. Reasons for these research gaps can be mentioned: deficiency in the teaching of research methods in universities, the reluctance of researchers to choose uncommon methods in research, and the procedure of journals to accept articles. It is recommended that research centers, universities and scientific and research journals provide grounds for solving these problems so that researches can benefit from more richness.

Keywords


  1. بیرامی، منصور (1393). سوگیری شناختی پردازش اطلاعات هیجانی در افراد مضطرب، افسرده و بهنجار. فصلنامه روانشناسی‌شناختی، (2)4، 51-60.
  2. پمپین، میشل ام. (1388). دانش مالی رفتاری و مدیریت دارایی، ترجمه احمد بدری. اپ اول، تهران: شرکت انتشارات کیهان.
  3. تاجمیر­ریاحی، حامد، و محمدمهدی دژدار (1396). رتبه‌بندی تورش­های رفتاری سرمایه­گذاران در مواجهه با اخبار و شایعات مهم سیاسی با تأکید بر دوره مذاکرات هسته­ای. دانش سرمایه­گذاری، 6(24)، 1-20.
  4. تفضلی، فریدون (1387). دوران اعتراض و آشوب­های اجتماعی همراه با تحولات شگرف اجتماعی و نظری در تاریخ علم اقتصاد(1920-1850). پژوهشنامه اقتصادی، 8(29)، 15-48.
  5. ثنائی­پور، هادی (1400). ارزیابی و تحلیل روش‎شناسی مطالعات کارآفرینی در گردشگری: رویکرد فراروش. روش‌شناسی علوم انسانی، (108)27، 1-17.
  6. چاووشی، کاظم، محمد رستگار، و محسن میرزایی (1394). بررسی رابطه اطمینان بیش از حد مدیران و انتخاب سیاست‌های تأمین مالی در شرکت­های پذیرفته شده در بورس اوراق بهادار تهران. دانش مالی تحلیل اوراق بهادار، 25، 41- 29.
  7. حقگو، بهناز(1391). بررسی سوگیری­های رفتاری با تصمیمات سرمایه­گذاری سرمایه­گذاران در بورس اوراق بهادار تهران. پایان­نامه کارشناسی ارشد. گروه مدیریت. دانشکده ادبیات و علوم انسانی. دانشگاه گیلان.
  8. حیدری، حدید (1390). بررسی خطاهای رایج عامل انسانی در تصمیم­گیری­های مدیریتی و ارایه چهار چوب بازدارنده. پایان­نامه کارشناسی ارشد، تهران: گروه MBA دانشکده علوم انسانی دانشگاه پیام نور تهران.
  9. خاکی، غلامرضا (1389). روش تحقیق مدیریت. چاپ پنجم، تهران: بازتاب.
  10. زارع شاه‌آبادی، اکبر، و لیلی بنیاد (1400). آسیب­شناسی پژوهش‌های مرتبط با حکمرانی آب در ایران با رویکرد فراروش (بازه زمانی: 1380−1397). بررسی مسائل اجتماعی ایران، 12(2)، 143−
  11. سعیدی، علی، و محمدجواد فرهانیان (1394). مبانی اقتصاد و مالی رفتاری، چاپ دوم، تهران: انتشارات بورس.
  12. سلامی، اکبر، احمد اصلی­زاده، و محمدرضا عسگری (1396). اطمینان بیش از حد مدیریتی، دخالت دولت و تصمیم تأمین مالی شرکت­ها در بورس اوراق بهادار تهران. مطالعات اقتصاد، مدیریت مالی و حسابداری، 3(1/2)، 72−
  13. صالح­نژاد، سیدعبداله، حسن درویش، علی‌اکبر احمدی، و لطف‌اله فروزنده (1397). فراترکیب مطالعات منزلت کارکنان در ایران. فصل­نامە پژوهش­های مدیریت منابع انسانی دانشگاه جامع امام حسینj،10(2)، 32 − 
  14. عباسی، عباس، و سحر شریفیان جزی (1399). فرا‌روشی بر تحقیقات انجام شده پایان‌نامه‌های کارشناسی ارشد و دکتری رشته مدیریت صنعتی دانشگاه شیراز. مدیریت صنعتی، 12(3)، 395−
  15. عبدالرحیمیان، محمد­حسین، تقی ترابی، سیدجلال صادقی­شریف، و رویا دارابی (1397). ارایه الگوی رفتاری تصمیم‌گیری سرمایه­گذاران حقیقی در بورس اوراق بهادارتهران. دانش سرمایه­گذاری، 26، 129− 
  16. عبدالملکی، صادق (1396). بررسی نقش روش‌های تامین مالی در بهبود رفتار تصمیم‌گیری سرمایه‌‌گذاران در بورس اوراق بهادار تهران. مطالعات کاربردی در علوم مدیریت و توسعه، 4، 41−
  17. علی­اکبری، اسماعیل، نفیسه مرصوصی، و مجید اکبری (1399). آسیب­شناسی فراروش پژوهش­های زیست­پذیری در مقیاس کلان شهرهای ایران. فصل­نامه جغرافیا و آمایش شهری -منطقه‌ای، 35، 85 −
  18. فردوسی، شهرام، فاطمه ملایی، بهمن حاجی‌پور، و مهدیه بابائی فرج­آباد، (1398). فراروش پژوهش­های بازاریابی در ایران: بررسی نزدیک­بینی در روش­ها. پژوهش­های مدیریت در ایران، (23)2، 172– 188.
  19. قربانی‌زاده، وجه‌اله، سیدطه حسن­نانگیر، و حبیب رودساز (1392). فراتحلیل عوامل مؤثر بر پذیرش فناوری اطلاعات در ایران. پژوهش­های مدیریت در ایران، (17)2، 177-196.
  20. کیان، علیرضا، امید پورحیدری، و یحیی کامیابی (1396). بررسی تأثیر حسابداری ذهنی بر رفتار سرمایه­گذاران از دیدگاه گزارشگری مالی. پژوهش­های حسابداری مالی، 32، 22- 1.
  21. کین، الکس، بادی، زوی، و مارکوس، الان.جی (1396). مدیریت سرمایه­گذاری، ترجمه روح­اله فرهادی و مجید شریعت­پناهی، چاپ سوم، تهران: انتشارات بورس.
  22. محزون، نیما (1389). بررسی ارتباط میان ویژگی‌های فردی، حرفه‌ای و شخصیتی با تورش‌های رفتاری. پایان­نامه کارشناسی ارشد، تهران: گروه مدیریت مالی دانشکده علوم اقتصادی.
  23. محمدنژاد شورکایی، مجتبی جشنی­آرانی، و یزدانی، حمیدرضا (1390). فراروش تحقیقات انجام شده درزمینهٔ عوامل مؤثر بر رضایت مشتری: تحلیل اسنادی پایان­نامه­های کارشناسی ارشد و دکتری دانشگاه­های دولتی تهران. چشم‌انداز مدیریت بازرگانی، (39)6، 141−
  24. موسوی، عارفه (1396). تأثیر ﺗﺄﻣﯿﻦ مالی اسلامی بر ثبات مالی در کشورهای منتخب اسلامی. پایان­نامه کارشناسی ارشد، بابل: گروه مدیریت بازرگانی مؤسسه آموزش عالی راه دانش بابل.
  25. Baddeley, A. D., & Hitch, G. J. (1974). Working memory. the psychology of learning and motivation, Academic Press, 8, 47–89.
  26. Barberis, N., Huang, M. (2001). Mental accounting, loss aversion, and individual stock returns. J. Finance, 56, 1247−
  27. Barberis, N., & Thaler, R. (2003). A survey of behavioral finance. Handbook of the Economics of Finance, 1, 1053-1128.
  28. Bertrand, M., & Schoar, A. (2003). Managing with style: The effect of managers on firm policies. Quarterly Journal of Economics, 118(4), 1169–1208.
  29. Bertrand, M., & Morse, A. (2011). Information disclosure, cognitive biases, and payday borrowing. The Journal of Finance, 66(6), 1865-1893.
  30. Billett, M. T., Qian, Y. (2008(. Are overconfident CEOs born or made? Evidence of self−attribution bias from frequent acquirers. Management Science, 54 (6), 1037-1051.
  31. Brennan, M., Kraus, A. (1987). Efficient Financing under Asymmetric Information. the Journal of Finance, 5, 1225−
  32. Camerer, C. F., Loewenstein, G. (2003). Behavioral Economics: Past, Present, Future. Advances in behavioral economics. Roundtable series in behavioral economics, Princeton: Princeton University Press, N.J., 1−
  33. Camerer, C, F., Loewenstein, G., Rabin, M. (2004). Behavioral Economics: Past, Present, Future, Princeton: Princeton University Press.
  34. Chen, G., Kim, K.A., Nofsinger, J.R. and Rui, O.M. (2007), Trading performance, disposition effect, overconfidence, representativeness bias, and experience of emerging market investors. J. Behav. Decis. Making, 20: 425-451.
  35. Damke, B. R. Junior, W. E. Rochman R. R. (2014). Which are the Investment Fund Managers in Brazil behavioral investing biases and their characteristics. FGV EAESP−GVcef−01º Encontro Brasileiro de Economia e Finanças Comportamentais.
  36. Doukas, J. A., & Petmezas, D. (2007). Acquisitions, overconfident managers and self‐attribution bias. European Financial Management, 13(3), 531-577.
  37. Edwards, W. (1968). Conservatism in human information processing, In Formal Representation of Human Judgment. ed. B Kleinmuntz, New York: John Wiley & Sons, 17−
  38. Fairchild, R. (2007). Behavioral Corporate Finance: Existing Research and Future Directions. Institution: School of Management, University of Bath, UK.
  39. Greenwald, A. G., Nosek, B. A., and Banaji, M. R. (2003). Understanding and using the Implicit Association Test: I. An improved scoring algorithm. Correction to Greenwald et al.
  40. Hackbarth, D. (2008). Managerial Traits and Capital Structure Decisions. Journal of Financial and Quantitative Analysis, (43)4, 843–882.
  41. Hammond J.,R. Keeney and H. Raiffa (2001), "The Hidden Traps in Decision Making", Harvard Business Review on Decision Making, Boston: Harvard Business School Press, Pp: 143-Robbins, 2000, 85.
  42. Heaton, J.B. (2002). Managerial Optimism and Corporate Finance. Financial Management, 31, 33−
  43. Hirshleifer, D. (2015). Behavioral finance. Annual Review of Financial Economics, 7, 133−‏
  44. Hoch, S. J., & Loewenstein, G. F. (1991). Time-inconsistent preferences and consumer self-control. Journal of consumer research, 17(4), 492-507.
  45. Ishikawa, M., Takahashi, H. (2010). Overconfident Managers and External Financing Choice. Review of Behavioral Finance, (2)1, 37−
  46. Kahneman, D., Knetsch, J.L., Thaler, R. H. (1991). Anomalies: The Endowment Effect, Loss Aversion, and Status Quo Bias. Journal of Economic Perspectives, (5)1, 193–206.
  47. Kahneman, D., Riepe, M. (1998). Aspects of Investor Psychology: Beliefs, Preferences, and Biases Investment Advisors Should Know About. Journal of PorPolio Management, 24, 52–65.
  48. Kahneman, D., Slovic, S. P., Slovic, P., & Tversky, A. (1982). Judgment under uncertainty: Heuristics and biases. Cambridge university press.‏
  49. Kahneman, D and Tversky, A, (1984). Choices, Values, and Frames. American Psychological Association, Inc., (39)4, 341−
  50. Kahneman, D., Tversky, A. (1991). Loss Aversion in Riskless Choice: A Reference−Dependent Model. The Quarterly Journal of Economics. (106)4, 1039−
  51. Korniotis, G. M. and A. Kumar (2011). Do Behavioral Biases Adversely Affect the Macro-Economy?, Review of Financial Studies, 24(5), 1513-59.
  52. Kumar, A. (2009). Who Gambles in the Stock Market?, Journal of Finance, 64(4), 1889-933.
  53. Langer, E. J., Roth, J. (1975). Heads I win, tails its chance: The illusion of control as a function of the sequence of outcomes in a purely chance task. J. Pers. Soc. Psychol, 32, 951−
  54. Lee, E., Piqueira, N. (2019). Behavioral biases of informed traders: Evidence from insider trading on the 52−week high. Journal of Empirical Finance, 52, 56-75.
  55. Lovallo, D., & Kahneman, D. (2003). Delusions Of Success, How Optimism Undermines Executives Decisions. Harvard Business Review, 81(7), 56−
  56. Malmendier, U., Tate, G., & Yan, J . (2005). Corporate Finance Policies with Overconfident Managers (Working Paper). NBER. Retrieved from www.nber.org/papers/w13570
  57. Mittal, M., Vyas R.K. (2008). Personality Type and Investment Choice: An Empirical Study. The ICFAI Journal of Behavioral Finance, 5 (3), 6 - 22.
  58. Montier, J. (2006). Behaving badly. Global equity strategy, SSRN Electronic Journal. Available at SSRN: https://ssrn.com/abstract=890563.
  59. Odean, T. (1998), “Volume, Volatility, Price, and Profit When All Traders Are Above Average”. Journal of Finance, American Finance Association, (53)6, 1887−
  60. Oechssler, J., Roider, A., & Schmitz, P. W. (2009). Cognitive abilities and behavioral biases. Journal of Economic Behavior & Organization, 72(1), 147-152.
  61. Olsen, R. A., Cox, C. M. (2001). The influence of gender on the perception and response to investment risk: the case of professional investors. Journal of Psychology and Financial Markets, (2)1, 29−
  62. Patterson, B., Thorne, S., Calnan, C., & Jillings, C. (2001). Meta−study of qualitative health research: a practical guide to meta−analysis and metasynthesis. California: Sage.
  63. Phan, K. C., & Zhou, J. (2014). Factors influencing individual investor behavior: An empirical study of the Vietnamese stock market. American Journal of Business and Management, 3(2), 77-94.
  64. Pompian, M. (2011). Behavioral Finance and Wealth Management: How to Build Optimal Portfolios That Account for Investor Biases, New Jersey: John Wiley & Sons.
  65. Pompian, M. (2012). Behavioral Finance and Investor Types: Managing Behavior to Make Better Investment Decisions. New Jersey: John Wiley & Sons.
  66. Pompian, M., Longo, J.M. (2004). A New Paradigm for Practical Application of Behavioral Finance: Creating Investment Programs Based on Personality Type and Gender to Produce Better Investment Outcomes. The Journal of Wealth Management. 7(2), 9-12.
  67. Pompian, M., Longo, J.M. (2005). Incorporating Behavioral Finance into Your Practice. Journal of Financial Planning, 18(3), 58–63.
  68. Puri, R. (1996). Measuring and modifying consumer impulsiveness: A cost-benefit accessibility framework. Journal of consumer Psychology.
  69. Richard, C. A., Harris, D. F., Zhan, R. (2015). Ambiguity aversion and stock market participation: an empirical analysis. Journal of Banking and Finance, 58, 57- 70.
  70. Samuelson, W., & Zeckhauser, R. (1988). Status quo bias in decision making. Journal of risk and uncertainty, 1, 7-59.
  71. Solnik, B., & Zuo, L. (2012). A global equilibrium asset pricing model with home preference. Management Science, 58(2), 273-292.
  72. Statman, M., S. Thorley, and K. Vorkink. (2006). Investor Overconfidence and Trading Volume. The Review of Financial Studies, 4(19), 1531- 1565.
  73. Tversky, A., Kahneman, D. (1973). Availability: A Heuristic for Judging Frequency and Probability. Cognitive Psychology, 5, 207−
  74. Tversky, A., Kahneman, D. (1974). Judgment under Uncertainty: Heuristics and Biases. Science, 185, 1124−

Tversky, A, Kahneman, D. (1981). The framing of decisions and the psychology of choice. Science, 211,453−8.